An evaluation of insecticidal activities and phytochemical properties of selected members of the family Meliaceae used traditionally as insecticides in southern Africa.

Calphonia Shilaluke and Prof. Annah Moteetee

Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa

INTRODUCTION

AL

Storage and field insect pests destroy about one-third of the global food production every year. Synthetic pesticides are the commonly used and highly effective means of controlling insect pests. However, their indiscriminate use results in environmental and health hazards to both humans and animals. Plants are known to be rich sources of bioactive chemicals, and more than 2 000 plant species are known to possess insecticidal properties. Hence, plantderived botanicals have emerged as a promising alternative to chemical pesticides due to their non-persistence, high selectivity, and low mammalian toxicity.

AIMS AND OBJECTIVES

The aim of the study was to assess the antifeedant and insecticidal properties of selected South African species of the family Meliaceae against Plutella xylostella (diamondback moth, DBM) and Spodoptera frugiperda (fall armyworm, FAW) and evaluate their phytochemical properties.

MATERIALS & METHODS

Insecticidal and antifeedant activities.

- 1. Feeding deterrence test (using maize leaves as test food for FAW and cabbage for DBM).
- Leaves were saturated by dipping in 1.0% extracts solutions of either water, acetone or ethanol and weighed before presenting them to five FAW and DBM

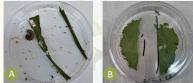


Figure 1: Feeding deterrence bioassay of fall armyworm (A) and the feeding deterrence bioassay of diamondback moth (B)

- 2. Topical application bioassay.
- > Ten microliters of each 0.5 or 1.0% aqueous, acetone or ethanol extract solution were applied to the dorsum of each larva.
- Five larvae were treated at each dose and then transferred to a petri dish

Qualitative phytochemical analysis.

1. Preliminary phytochemical screening.

- 2. GC-HRT- MS analyses.
- > The samples were analyzed on the GC-HRT- MS system which was equipped with an Agilent 7890A gas chromatograph (Agilent Technologies, Inc., Wilmington, DE, USA).
- For each plant extract, a volume of 1 µl was injected in a spitless mode

FUTURE RESEARCH

- Further investigation of the potential plant extracts to check if they are able to maintain yield at comparable levels to synthetic pesticides efficacy.
- > The trade-off between lower mortality for lower environmental persistence need to be seriously considered, particularly as there is growing evidence that less toxic botanical insecticides can help facilitate natural pest regulation whilst not significantly sacrificing crop yield.

RESULTS & DISCUSSIONS

Insecticidal activities.

1. Feeding deterrence bioassay. Table 1: Feeding deterrence test results for the fall armyworm larvae. Efficacy of extracts

were ranked using the following rankings: total coefficient de -200 = ++++, 100 - 150 = +++, 50 - 100 = ++ and 0 - 50 = ++. t deterrence value of between 150

Plant species	Extract		Coefficient of deterrence		Efficacy of	F value (P value
		Absolute (A)	Relative (R)	Total (T)	extracts	
1. Cedrela odorata	Aqueous	4.38	-34.26	-29.88	0	0,16 (0.86)
	Acetone	45.25	70.60	115.85	+++	
	Ethanol	20.11	18.89	39	+	
2. Ekebergia capensis	Aqueous	21.66	26.61	48.27	+	2.04 (0.21)
	Acetone	25.14	19.97	45.11	+	
	Ethanol	-10.77	28.55	17.78	+	
I. Khaya anthotheca	Aqueous	35.39	12.30	47.69	+	0.54 (0.61)
	Acetone	11.33	11.72	23.05	+	
	Ethanol	-2.55	4.04	1.49	+	
. Melia azedarach	Aqueous	48.04	35.88	83.92	++	4.40 (0.06)
	Acetone	58.14	3.43	61.57	++	
	Ethanol	28.96	8.39	37.35	+	
. Toona ciliata	Aqueous	22.53	12.41	34.94	+	5.72 (0.04)
	Acetone	6.22	30.99	37.21	+	
	Ethanol	23.38	21.23	44.61	+	
. Trichilia emetica	Aqueous	43.56	24.78	68.34	++	5.92 (0.04)
	Acetone	32.39	35.76	68.15	++	
	Ethanol	28.62	11.15	39.77	+	
. Trichilia dregeana	Aqueous	29.95	32.07	62.02	++	13.71 (0.005)
	Acetone	29.01	23.84	52.85	++	
	Ethanol	14.30	31.99	46.29	+	
8. Turraea floribunda	Aqueous	24.40	42.56	66.96	++	0.20 (0.82)
	Acetone	17.86	3.04	20.90	+	
	Ethanol	3.04	-15.93	-12.89	0	
9. Turraea obtusifolia	Aqueous	40.91	26.38	67.29	++	3.69 (0.09)
	Acetone	17.51	17.17	34.65	+	
	Ethanol	27.06	41.38	68.44	++	

recorded from the acetone extracts of Cedrela odorata. Aqueous extracts of Cedrela odorata and ethanolic extracts of Turraea floribunda were found to have inert compounds against the larvae.

Plant species	Extract	Coefficient of deterrence			Efficacy of extract	F value (P value)	
		Absolute (A)	Relative (R)	Total (T)	_		
1. Cedrela odorata	Aqueous	78.34	18.21	96.55	++	4.54 (0.06)	
	Acetone	66.55	42.05	108.6	+++		
	Ethanol	27.49	84.06		+++		
2. Ekebergia capensis	Aqueous	27.65	3.61	31.26	+	2.39 (0.17)	
	Acetone	50.60	2.57	53.17	++		
	Ethanol	40.39	45.40	85.79	++		
3. Khaya anthotheca	Aqueous	32.62	13.57	46.19	+	9.29 (0.01)	
	Acetone	53.20	23.91	77.11	++		
	Ethanol	49.11	1.81	50.92	++		
4. Melia azedarach	Aqueous	34.79	3.34	38.13	+	13.56 (0.006)	
	Acetone	32.89	13.55	46.44	+	_	
	Ethanol	56.13	4.13	60.26	++		
5. Toona ciliata	Aqueous	56.26	20.89	77.15	++	3.37 (0.10)	
	Acetone	60.59	-67.50	-6.91	0		
	Ethanol	38.81	-51.48	-12.67	0	_	
6. Trichilia emetica	Aqueous	50.31	35.61	85.92	++	343.09 (6.51)	
	Acetone	49.72	39.29	89.01	++		
	Ethanol	47.75	42.32	90.07	++		
7. Trichilia dregeana	Aqueous	45.85	52.92	98.77	++	34.83 (0.0005)	
	Acetone	62.37	49.88		+++		
	Ethanol	63.52	35.87	99.39	++		
8. Turraea floribunda	Aqueous	34.70	-20.75	13.95	+	22.48 (0.002)	
	Acetone	49.41	-23.48	25.93	+		
	Ethanol	49.65	-5.43	44.22	+		
9. Turraea obtusifolia	Aqueous	42.24	44.50	86.74	++	3.69 (0.09)	
	Acetone	38.94	0.94	39.88	+		
	Ethanol	55.43	-1.06	54.37	++	-	

- Most plant extracts indicated exceptionally high feeding deterrence against the diamondback moth as compared to the fall armyworm larvae.
- Aqueous and ethanol extracts of Cedrela odorata and acetone extracts of Trichilia dregeana recorded the most feeding dete
- × Acetone and ethanol extracts of Toong ciliata were found to have inert ompounds against the larvae.

2. Topical application bioassay.

int species	Extracts	Average of % dead	LD _{so} (mg/kg)
. Cedrela odorata	Aqueous	50	707.95
	Acetone	50	707.95
	Ethanol	50	707.95
. Ekebergia capensis	Aqueous	80	0.14
	Acetone	50	707.95
	Ethanol	40	851.14
. Khaya anthotheca	Aqueous	20	6.92
	Acetone	20	6.92
	Ethanol	80	0.14
. Melia azedarach	Aqueous	50	707.95
	Acetone	50	707.95
	Ethanol	50	707.95
. Toona ciliata	Aqueous	50	707.95
	Acetone	70	371.54
	Ethanol	70	371.54
6. Trichilia emetica	Aqueous	30	1348.96
	Acetone	70	371.54
	Ethanol	70	371.54
. Trichilia dregeana	Aqueous	50	707.95
	Acetone	50	707.95
	Ethanol	60	588.84
. Turraea floribunda	Aqueous	60	0.56
	Acetone	50	707.95
	Ethanol	20	6.92
. Turraea obtusifolia	Aqueous	70	371.54
	Acetone	50	707.95
	Ethanol	70	371.54

- > Probability unit (Probit) analysis indicate that the extracts with the lowest LD_{so} values are more toxic to the larvae, and the ones with the highest values are less toxic.
- > Aqueous extracts of Ekebergia capensis and ethanol extracts of Khaya anthotheca are more toxic to the fall armyworm larvae
- Aqueous extracts of Trichilia emetica is less toxic to the larvae

REFERENCES

- Akhtar, Y., Yeoung, Y. R, & Isman, M. B. (2017). Comparative bloactivity of selected extracts from Meliaceae some commercial botanical insecticides against two noctuid caterpillars, *Trichoplus incto*, *Phytochem Rev.*, 7,77–88 mella, M.C., Defago, M.T., Valladares, G. & Palacios, S.M. (2003). Antifeedant and i limonoid from *Mella* azedarach (Mellaceae) with potential use for pest manage
- Carpinella, M.C., peregu, m.v., and a constraint of a limonal form *Melia* academic (Meliaceae) with potential use for pest Imania. *Chem*, 51, 589–374. Dhale, D.A. (2013) Plants Used for insect and pest control in North Maharashtra, India. *Journal of Ethnobiology and Traditional Ethnomedicine*, 118, 379–388. Imama, M. (2020). Insect Antifedations. *The Royal Society of Chemistry*, 1, 152-157. Phambala, K, Tembo, Y, Kasambalo, T, Kabambe, VH, Stevenson, P.C. & Belmain, S.R. (2020). Bioactivity of Common Pestidiad Plants on Fall armsymmer Tanze (Spochogene Turguered). *Plants*, 9(112), 11-10. Pratap, K, Kaur, Y, Galiyan, S, Jangra, A, Pradeep, A, Rani, M. & Maken, S. (2016). Exploring the phytochemicals of *Delphinum agois* and their applications in biocontrol activity against some plant pathogens. *J. Chem. Pharm. Res.*, 8, 11–18.

lant species	Extracts	Average of % dead	LD ₅₀ (mg/kg)
I. Cedrela odorata	Aqueous	60	0.56
	Acetone	70	1318.26
	Ethanol	30	371.54
. Ekebergia capensis	Aqueous	50	691.83
	Acetone	50	707.95
	Ethanol	50	691.83
. Khaya anthotheca	Aqueous	60	588.84
	Acetone	30	1318.26
	Ethanol	50	691.83
. Melia azedarach	Aqueous	80	0.14
	Acetone	80	0.14
	Ethanol	80	0.14
. Toona ciliata	Aqueous	30	1318.26
	Acetone	30	371.54
	Ethanol	40	1.78
Trichilia emetica	Aqueous	60	371.54
	Acetone	60	1318.26
	Ethanol	50	707.95
7. Trichilia dregeana	Aqueous	50	691.83
	Acetone	50	707.95
	Ethanol	50	691.83
8. Turraea floribunda	Aqueous	60	851.14
	Acetone	40	851.14
	Ethanol	50	707.95
). Turraea obtusifolia	Aqueous	40	1.78
	Acetone	30	1318.26
	Ethanol	70	1318.26

> All three different extracts of Melia azedarach were found to be more xic to the diamondback moth larvae.

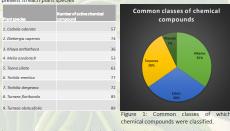
> Quite a number of different plant extracts displayed insignificant toxicity to the diamondback moth larvae as compared to the fall armyworm larvae

Qualitative phytochemical screening

1. Preliminary phytochemical screenings results.

Table 5: Preliminary phytochemical screening results evaluating the presence or absence of alkaloids, coumarins, flavonoids, phenols and tannins, saponins and terpenoids in plant extracts. + = presence, - = absence

Plant species		s	econdary metabo				
	Alkaloids	Flavonoids	Terpenoids	Phenols and	Saponins	Coumarins	
				tannins			
1. Cedrela odorata	+	+	+	+	+	+	
2. Ekebergia capensis	+	+	+	+	+		
3. Khaya anthotheca	+	+	+	+	+	+	
4. Melia azedarach	+	+	+	+	+	+	
5. Toona ciliata		+		+	+		
6. Trichilia emetica	+		+	+	+		
7. Trichilia dregeana	+	+	+	+	+		
8. Turraea floribunda	+	+	+	+	+	+	
9. Turraea obtusifolia	+	+	+	+	+		


- > Secondary metabolites of importance are terpenoids, alkaloids and phenolic compounds.
- > All the plant extracts contain at least one of these importance secondary metabolites , which credit their insecticidal and antifeedant properties observed.

n classes of chemical

compounds

2. GC-HRT- MS analyses.

Table 6: active compounds which are present in each plant species

- > Active chemical compounds identified in each plant extracts (table 6) were
- classified into secondary metabolites classes (figure 1). > Phenols and terpenes are the note worthy and well-known groups; they are known to have insecticidal and antifeedant properties

CONCLUSION

- \succ The data obtained in this study confirmed many previous reports and can lead to the conclusion that Meliaceae extracts can be considered as effective botanical insecticides
- Phytochemical contents of plant extracts evaluated correlate with their insecticidal and antifeedant activities against the fall armyworm and the diamondback moth
- Out of the nine selected species evaluated, five of them merit further investigation as they have shown excellent results
- These are Cedrela odorata, Ekeberaia capensis, Melia azedarach, Trichilia emetica and Turraea dregeana.

ACKNOWLEDGEMENTS

- Supervisor: Prof. Annah Moteetee
 Co-supervisor: Prof. Henok Kinfe
- Mrs Alison Young (UKZN)
- Mr Tebogo Mailula and Mr Satch Mosiane (ARC- VOPI) > Department of Biotechnology and Food Technology (UJ)

